



A60B No Controls



A62B 2 Port Control



A63B 3 Port Control

# AquaSave 6 Bar Storage

**Operating & Instruction Manual** 

600 -2000 Litres

# Content

| Dimensional Details                                        | Section 1  | Page 1           |
|------------------------------------------------------------|------------|------------------|
| Product Overview                                           | Section 2  | Page 2           |
| Working Pressure and Temperature<br>Packing Format         | 2.1<br>2.2 | Page 2<br>Page 2 |
| Options                                                    | Section 3  | Page 3           |
| A60B No Controls                                           | 3.1        | Page 3           |
| A62B 2 Port Control Valve                                  | 3.2        | Page 3           |
| A63B 3 Port Control Valve                                  | 3.3        | Page 4           |
| Installation                                               | Section 4  | Page 5           |
| Siting                                                     | 4.1        | Page 5           |
| Hydraulic Connections                                      | 4.2        | Page 5           |
| Basic Assembly Instructions                                | 4.3        | Page 5           |
| Commissioning                                              | 4.4        | Page 6           |
| Setting the DHW Flow Rate                                  | Section 5  | Page 6           |
| Electrical Connections                                     | Section 6  | Page 7           |
| A60B                                                       | 6.1        | Page 7           |
| A62B and A63B                                              | 6.2        | Page 7           |
| Electrical Power Ratings Table                             | 6.3        | Page 7           |
| Current Limiting Fuses                                     | 6.4        | Page 7           |
| Electrical Installation of Control Box, A62B and A63B Only | Section 7  | Page 8           |
| Controller Components                                      | 7.1        | Page 8           |
| Electrical Wiring Diagram, A62B                            | 7.2        | Page 9           |
| Electrical Wiring Diagram, A63B                            | 7.3        | Page 10          |
| User Instruction Operator Control Panel Micro 3000         | Section 8  | Page 11          |
| Home Screen                                                | 8.2        | Page 12          |
| Command and Symbols                                        | 8.3        | Page 12          |
| Password and Login                                         | 8.4        | Page 12          |
| Setting the Time and date                                  | 8.5        | Page 13          |
| Changing the Date Format                                   | 8.6        | Page 13          |
| Setting the Daylight Saving Time                           | 8./        | Page 13          |
| Saving Changes                                             | 0.0        | Page 14          |
| End User Mode                                              | Section 9  | Page 14          |
| Set the Hot Water Temperature                              | 9.1        | Page 14          |
| Time Programs                                              | 9.2        | Page 14          |
| Changing Time and Temperature in a Time Program            | 9.3        | Page 15          |
| Special Days                                               | 9.3.1      | Page 15          |
| Making a Quick Temperature Change                          | 9.4        | Page 16          |
| Technician Menu                                            | Section 10 |                  |
| Login                                                      | 10.1       | Page 17          |
| The Technician Main Menu                                   | 10.2       | Page 17          |
| Configuration Menu                                         | 10.3       | Page 18          |
| S1 Menu Secondary Outlet                                   | 10.4       | Page 19          |
| I hermal Treatment Menu                                    | 10.5       | Page 20          |
| Satety Function                                            | 10.6       | Page 20          |
| ECO-BOOSTER FUNCTION                                       | 10.7       | Page 21          |
|                                                            | 10.8       | Page 21          |
|                                                            | 10.9       | Page 22          |
| Autorest Menu<br>Clear Alarm Menu                          | 10.10      | Page 24          |
|                                                            | 10.11      | raye 24          |

# Content cont.

| Service Menu                                  | Section 11 | Page 25  |
|-----------------------------------------------|------------|----------|
| Change Password for Technicial Level          | 11.1       | Page 25  |
| Login Installer                               | 11.2       | Page 25  |
| Menu Continue                                 | 11.3       | Page 26  |
| Operating Hours                               | 11.4       | Page 27  |
| Trending Parameters Menu                      | 11.5       | Page 28  |
| Display the Trend Buffer                      | 11.6       | Page 29  |
| Point Data                                    | 11.7       | Page 29  |
| Alarm Menu                                    | Section 12 | Page 30  |
| Parameters List                               | Section 13 | Page 31  |
| Factory Reset                                 | Section 14 | Page 32  |
| Modbus                                        | Section 15 | Page 33  |
| Modbus Communication                          | 15.1       | Page 33  |
| Connecting Multiple Micro 3000 Control Boxes  | 15.2       | Page 33  |
| Change Modbus Paremeters                      | 15.3       | Page 34  |
| Modbus Slave Communication Parameters         | 15.4       | Page 34  |
| Trouble Shooting                              | Section 16 | Page 37  |
| Maintenance and Repairs                       | Section 17 | Page 38  |
| Antibacterial Treatment of the AquaSTOR       | 171        | Page 39  |
| Clean the Copper Brazed Plate Heat Exchangers | 17.2       | Page 39  |
| Open the Control Box                          | 17.3       | Page 40  |
| Set the Number of Pumps                       | 17.4       | Page 40  |
| Pumps Number                                  | 17.5       | Page 41  |
| Add an Extra Sensor                           | 17.6       | Page 41  |
| Connect to 230V Triac Output                  | 17.7       | Page 41  |
| Add Relay 1 and Relay 2                       | 17.8       | Page 41  |
| Add a Remote Control Contact                  | 17.9       | Page 42  |
| Assembly of the Charging Kit to the AquaSTOR  | Section 18 | Page 43  |
| Flowcharts                                    | Section 19 | Page 48  |
| Flowchart A60B                                | 19.1       | Page 48  |
| Flowchart A62B                                | 19.2       | Page 48  |
| Flowchart A63B                                | 19.3       | Page 49  |
| Wiring the Charging Pump                      | Section 20 | Page 50  |
| Special Instructions for Options              | Section 21 | Page 51  |
| Special Instructions for A62B                 | 21.1       | Page 51  |
| Electrical Wiring                             | 21.1.1     | Page 51  |
| Wiring Diagram                                | 21.1.2     | Page 51  |
| Commissioning Report                          | Section 22 | Page 52  |
| Warranty                                      | Section 23 | Page 53  |
| Spare Parts                                   | 23.1       | Page 53  |
| How to contact Us                             | 23.2       | Page 53  |
|                                               |            | <b>U</b> |

# 1. Dimension Details

## AquaSave A60B Dimensional Details

- 1. Primary Inlet
- 2. Primary Outlet
- 3. Secondary Flow
- 4. Secondary Return
- 5. Cold Feed
- 6. Instrument Connections (3-off)
- 7. Gauge Connections
- 8. Immersion Heater(s) See Table
- 9. Safety Valve Connection(s) Subject to Duty
- 10. Inspection Opening (DN250)
- 11. 50mm Mineral Wool Insulation c/w Al. Stucco Cladding



| Volume |      | Dimen | isions |      |    |    | Conne | ection | s (Scr | rewed | BSP F | )    |    | Weight |
|--------|------|-------|--------|------|----|----|-------|--------|--------|-------|-------|------|----|--------|
| (Ltrs) | А    | В     | С      | D    | 1  | 2  | 3     | 4      | 5      | 6     | 7a    | 7b   | 8  | (kg)   |
| 600    | 1910 | 880   | 1105   | 700  | 1″ | 1″ | 2″    | 1″     | 2″     | 1⁄2″  | 1⁄2″  | 3⁄8" | 2″ | 260    |
| 800    | 1965 | 965   | 1205   | 800  | 1″ | 1″ | 2″    | 1″     | 2″     | 1⁄2″  | 1⁄2″  | 3⁄8" | 2″ | 295    |
| 1000   | 1945 | 1050  | 1305   | 900  | 1″ | 1″ | 2″    | 1″     | 2″     | 1/2"  | 1/2"  | 3⁄8" | 2″ | 335    |
| 1250   | 2020 | 1135  | 1405   | 1000 | 1″ | 1″ | 2″    | 1″     | 2″     | 1⁄2″  | 1⁄2″  | 3⁄8" | 2″ | 365    |
| 1500   | 2020 | 1220  | 1505   | 1100 | 1″ | 1″ | 2″    | 1″     | 2″     | 1⁄2″  | 1⁄2″  | 3⁄8" | 2″ | 400    |
| 2000   | 2275 | 1305  | 1605   | 1200 | 1″ | 1″ | 2″    | 1″     | 2″     | 1⁄2″  | 1/2"  | 3⁄8" | 2″ | 540    |

## AquaSave A62B & A63B Dimensional Details





C





| Volume |      | Dimen | sions |      |    |    | Conne | ection | s (Scr | rewed | BSP F | )                |    | Weight |
|--------|------|-------|-------|------|----|----|-------|--------|--------|-------|-------|------------------|----|--------|
| (Ltrs) | А    | В     | С     | D    | 1  | 2  | 3     | 4      | 5      | 6     | 7a    | 7b               | 8  | (kg)   |
| 600    | 1910 | 910   | 1265  | 700  | 1″ | 1″ | 2″    | 1″     | 2″     | 1⁄2″  | 1/2"  | <sup>3</sup> ⁄8" | 2″ | 280    |
| 800    | 1965 | 965   | 1365  | 800  | 1″ | 1″ | 2″    | 1″     | 2″     | 1⁄2″  | 1⁄2″  | 3⁄8"             | 2″ | 315    |
| 1000   | 1945 | 1050  | 1465  | 900  | 1″ | 1″ | 2″    | 1″     | 2″     | 1⁄2″  | 1⁄2″  | 3⁄8"             | 2″ | 355    |
| 1250   | 2020 | 1135  | 1565  | 1000 | 1″ | 1″ | 2″    | 1″     | 2″     | 1⁄2″  | 1⁄2″  | <sup>3</sup> ⁄8" | 2″ | 385    |
| 1500   | 2020 | 1220  | 1665  | 1100 | 1″ | 1″ | 2″    | 1″     | 2″     | 1⁄2″  | 1⁄2″  | 3⁄8"             | 2″ | 420    |
| 2000   | 2275 | 1305  | 1765  | 1200 | 1″ | 1″ | 2″    | 1″     | 2″     | 1/2"  | 1/2"  | 3⁄8"             | 2″ | 560    |

# 2. Product Overview

The basic version of the Aquasave DHW heater, indirect (semi-instantaneous) system, comprises of:



110

6

#### 2.2 Packing Format

Aquasave is delivered it two packages:

10

Storage Tank

A63B

Exchanger Kit

95

# 3. Options

There are three different control systems available as options.

#### 3.1 A60B - No Controls

Supplied with only the secondary charging circuit.

Follow the assembly instructions in Section 18, Assembly of the charging kit to the AquaSTOR



#### 3.2 A62B - 2 Port Control Valve

- 1 x two-port PN25 valve body.
- 1 x PT100 temperature sensor.
- 1 x actuator, 230V 3 points with return to zero.
- 1 x PID controller box with piping and support, depending on the model selected.

The primary circuit is pre-assembled on the exchanger. Follw the assembly instructions in *Section 18, Assembly of the charging kit to the AquaSTOR.* 



#### 3.3 A63B - 3 Port Control Valve

- 1 x three-port PN16 valve body.
- 1 x primary shunt pump PN10.
- 1 x actuator, 24V AC feed-in and 0-10V DC controller current.
- 1 x PID controller box with Pt100 temperature sensor
- Primary piping, sized differently, according to heat exchanger type.
- Controller support

The primary circuit is pre-assembled on the exchanger. Follw the assembly instructions in *Section 18, Assembly of the charging kit to the AquaSTOR.* 



# 4. Installation

#### 4.1 Siting

The AquaSave hot water heater must be installed in a dry place, where room temperature is below 40°C and ideally in ventilated premises. AquaSave is placed preferably on a sub-base footing.

#### 4.2 Hydraulic Connections

Connect the charging kit (exchanger + control valve + pump) to the storage tank, using the interlink kit.



Make arrangements for fitting the insulation onto the tank, before connecting up the piping.

The indirect AquaSave module can run without a recirculation system fitted.

To avoid creating a galvanic coupling, check that the materials used in the installation have similar corrosion potentials.

#### 4.3 Basic Assembly Instructions

Assembly: Refer to the full instructions given in *18 Assembly of the charging kit to the AquaSTOR.* Connect the primary supply and return connections. Connect the cold water supply, hot water outlet and the recirculation system to the tank.

Fit he tank wth a safety valve, a drain valve in the top section and a draw off in the bottom section.

**NOTE**: The valve is a compulsory fixture that has to be pre-loaded at the storage tank operating pressure.

**NOTE**: The safety valve on the charging kit only protects the secondary system. It will neither protect, nor surge-feed the installation and the volume stored, in corresondence with local rules.

The safety valve must have the same diameter as the cold water inlet fixture.



**Top Section Connection** 



Exchanger Support + Accessories



Bottom section connection. Shut-off valve inserted between the conduit hose and the cold-water inlet fixture.

#### 4.4 Commissioning

- Flood the various circuits and flush-bleed the pumps
- Power-up.
- Set the secondary (charging) flow rate using the TACO valve (read-off + setting)

#### NOTE:

When first heated, the water in the tank will expand, increasing the pressure. A water hammer-arrester- type surge tank qualified for DHW systems may be fitted to prevent the relief valve from opening (check the water network pressure).

# 5. Setting the DHW Flow Rate

The secondary DHW flow rate is set with the tank full and the primary circuit at nominal operating temperature and at the available exchanger power capacity required for the generator.

- 1. Fully open up the control valve on the primary side.
- 2. If a 3-way control valve is fitted, wait for it to open completely.
- 3. Adjust the secondary flow circuit, as set out in the table below. The flow rate can be read by pressing on the red push button and reading the index marker against the float.



| P(kW) DHW T(°C) | 30  | 40   | 50 | 60 | 70 | 80   | 90   | 100 | 125 | 150 | 175 | 200 | 240 |
|-----------------|-----|------|----|----|----|------|------|-----|-----|-----|-----|-----|-----|
| 10 > 55°C       | 9.5 | 13   | 16 | 19 | 22 | 25.5 | 28.5 | 32  | 40  | 48  | 56  | 63  | 76  |
| 10 > 60°C       | 8.5 | 11.5 | 14 | 17 | 20 | 23   | 26   | 28  | 35  | 43  | 50  | 57  | 68  |
| 5 > 70°C        | 6   | 9    | 11 | 13 | 15 | 17   | 20   | 22  | 27  | 33  | 38  | 44  | 53  |



The recirculation flow rate must be 60% maximum of the secondary flow rate.

#### **Electrical Connections** 6.

All devices must be connected up in compliance with the governing standards.



All work on the control box and other electrical components, must be done by qualified people.



The main electrical box should be equipped with short-circuits protection.

#### 6.1 A60B



All charging pump has to be powered constantly.

#### A62B & A63B 6.2

For more information about the Operator Control box, see Chapter 6 electrical installation of the control box option and forward.



Power the control box via a single-phase 230V + ground. Electrical system components pre-cabled according to the hardware ordered.

#### **Electrical Power Ratings Table** 6.3

| Unit<br>Type      | Primary<br>Pump Type            | Primary Pump<br>Consumption W, A | Secondary<br>Pump Type | Secondary Pump consumption, W | TOTAL +<br>Control Box <sup>1)</sup> |  |  |  |  |
|-------------------|---------------------------------|----------------------------------|------------------------|-------------------------------|--------------------------------------|--|--|--|--|
| A60B<br>80-200 kW | -                               | -                                | UP20-45N               | 115W 0.5A                     | 125W<br>0.6A <sup>2)</sup>           |  |  |  |  |
| A60B<br>>200 kW   | -                               | -                                | UPS 32-80N             | 240W 1.05A                    | 245W<br>1.15A <sup>2)</sup>          |  |  |  |  |
| A62B<br>80-200 kW | -                               | -                                | UP20-45N               | 115W 0.5A                     | 125W<br>0.8A                         |  |  |  |  |
| A62B<br>>200 kW   | -                               | -                                | UPS 32-80N             | 240W<br>1.05A                 | 250W<br>1.17A                        |  |  |  |  |
| A63B<br>80-200 kW | Magna 1 32-80                   | 151W<br>1.22A                    | UP20-45N               | 115W<br>0.5A                  | 266W<br>2.02A                        |  |  |  |  |
| A63B<br>>200 kW   | magna 1 32-80                   | 1.51W<br>1.22A                   | UPS 32-80N             | 240W<br>1.05A                 | 391W<br>2.57A                        |  |  |  |  |
|                   | Single-Phase 230 Volts + Ground |                                  |                        |                               |                                      |  |  |  |  |

1)

The electrical consumption of the control box and the actuator is 10W, 0.3A. Figures are rounded up to the nearest value. 2) Has no control box.

#### **Current Limiting Fuses** 6.4

Power cards are equipped with fuses, labelled FU1 to FU5 on the printed circuit.

| Fuse       | FU1      | FU2      | FU3      | FU4      | FU5      |
|------------|----------|----------|----------|----------|----------|
| Protection | Pump 1   | N/A      | Pump     | N/A      | РСВ      |
| Size (mm)  | 6.3 x 32 |
| Calibre    | 2.5A     |          | 2.5A     |          | 250mA    |
| Voltage    | 250V     | 250V     | 250V     | 250V     | 250V     |

Safety fuses are supplied inside the control box.

# 7. Electric Installation of Control Box A62B & A63B Only

Power supply the control box with 230VAC 50 Hz. The control box with the controller Micro 3000 is called the secondary control box.



Human protections and protections against short circuits and over intensity must be installed in the main electric box.

#### 7.1 Controller Components



Picture 16

3 Power Supply Contact

2 Main Switch

4 Printed Circuit Board

#### 7.2 Electrical Wiring Diagram A62B

**NOTE**: When the remote control contact is open, the unit operates normally. If it is closed, the unit is in standby.



NOTE: \*) 230V 3pts actuator wiring. See Section 21, Special instructions for options.

#### 7.3 Electrical Wiring Diagram A63B

**NOTE**: When the remote control contact is open, the unit operates normally. If it is closed, the unit is in standby.



# 8. User Instruction Operator Control panel Micro 3000



| Button | Function                                                                                                |
|--------|---------------------------------------------------------------------------------------------------------|
|        | Rotary button for scrolling through the menus. Access sub-menus and change settings by pressing it.     |
|        | To activate the line, or change a highlighted value, simply press the wheel. Works like an 'Enter' key. |
| C      | Press to exit a level to the previous menu / parameter.<br>Works like an 'ESC' key.                     |
|        | Press to access the maintenance / monitoring menu.<br>NOTE: Requires a password.                        |
|        | Press to go to the 'Home' screen, Main menu.                                                            |
|        | Press to access the 'Alarm' menu.                                                                       |
| 1      | Not used                                                                                                |
| 2      | Not used                                                                                                |
| A1     | Relay 1 activated.                                                                                      |
| A2     | Relay 2 activated.                                                                                      |
| Tx     | Active data transmission.                                                                               |
| Rx     | Active data reception.                                                                                  |
|        | Alarm indicator                                                                                         |
| Ċ      | The contro box is switched on.                                                                          |

#### 8.2 Home Screen

When starting up the Micro 3000 controller, this menu displays on the screen. The menu is called the Home Screen.



**NOTE**: If there is an ongoing alarm when starting up the Aquamodule, an alarm text will be displayed on the screen. Press the House button to enter the Home screen.

#### 8.3 Command Symbols

Auto

Manual



Datapoint is in automatic operation and can be switched into manual operation.

# TW)

# Today Function

Datapoint value can be overridden for a particular time within the next 24 hours. Datapoint must have a daily time program assigned.

Datapoint is in manual operation and can be switched into automatic operation.



#### Time Program

Datapoint has a daily time program assigned. Daily time program can be selected and edited.



#### Edit

Item (datapoint, time program etc.) can be edited.



#### Add

Item (datapoint, time program etc.) can be added to a list e.g., datapoint can be put to a list of trended datapoints.



### Deleted

Item can be deleted.

#### Enable / disable

- Checked: Item is enabled
- Unchecked: Item is disabled

#### 8.4 Password and Login

The controller has password protection, allowing accesses to different menus.

- End User Level requires no login. Marked with a locker in the upper right corner.
- Technician Level Access to all menus requires login. Marked with a key in the upper right corner.

#### 8.5 Setting the Time and Date

1. Turn the wheel anticlockwise to highlight the line with time and date at the top of the screen. Press the wheel to enter the Date/Time menu.

| 18-09-2012 16:47 | 6 |
|------------------|---|
| T_Secondary_Out  | Ø |
| 60.2 °C          |   |
| S1_PID_Setpoint  | Ø |
| 60.0 °C          |   |



- 2. Press the wheel to change the first variable, the year.
- When the year flashes, increase, or reduce the set value by rotating the wheel. Once the right value is displayed, press the wheel to confirm the setting. Next parameter to change starts to flash.
- 4. Proceed in the same way to set the month, date, and time (hour: minute).

| Date / Time          |            |  |  |  |  |
|----------------------|------------|--|--|--|--|
| Date:                | 18-09-2012 |  |  |  |  |
| Time:                | 16:49      |  |  |  |  |
| Format:              | 31-12-2009 |  |  |  |  |
| Daylight Saving Time |            |  |  |  |  |

| Date / Time          |            |  |  |  |  |
|----------------------|------------|--|--|--|--|
| Date:                | 18-09-2012 |  |  |  |  |
| Time:                | 16:55      |  |  |  |  |
| Format:              | 31-12-2009 |  |  |  |  |
| Daylight Saving Time |            |  |  |  |  |

#### 8.6 Changing the Date Format

In the Date/Time menu the date format can be changed. Choose between the following formats:

- yyyy-mm-dd mm-dd-yyyy
- dd-mm-yyyy
   dd.mm.yyyy
- dd/mm/yyyy

The formats in bold are the most used in the UK.

#### 8.7 Setting the Daylight-Saving Time

#### Summertime

Changing between summer/wintertime can be automatic or turned off. You can also define the dates for changes if they are altered.

The default settings for summertime are: Last Sunday in March to last Sunday in October.

| Date / Time          |            |  |  |
|----------------------|------------|--|--|
| Date: 18-09-2012     |            |  |  |
| Time:                | 16:56      |  |  |
| Format:              | 31-12-2009 |  |  |
| Daylight Saving Time |            |  |  |

| Daylight Saving Time |  |  |  |
|----------------------|--|--|--|
| Sunday of Month      |  |  |  |
| Begin: Last Mar      |  |  |  |
| End: Last Oct        |  |  |  |

#### 8.8 Saving Changes

Once a value has been changed and confirmed by pressing the wheel, the corresponding change will be immediately updated.

Press the C or A to return to the home screen.

# 9. End User Mode

The following changes can be done in end user mode:

- Settings which are identical/different for each day of the week at defined times.
- Normal temperature(s).
- Lower temperature(s).
- Special period of defined duration during the current year.
- Waiver with change of setting at a specific time.

Please set a hot water production temperature in line with current national legislation and recommendations (UTD, Standards EN, ISO etc.)

All countries have different rules for how hot or cold tap water should be.

Ormandy Rycroft Engineering, recommends the hot water temperature is at least 55°C and a hot water circulation not less than 50°C.

At a temperature below 50°C there is a risk of bacterial growth.

Note that at temperatures above 60°C the risk of scalding increases.

Set points above 63°C result in an increased risk of precipitation of lime scaling on the surface of the heat exchanger.

#### 9.1 Set the Hot Water Temperature

Please set a hot water production temperature in line with current National legislation and recommendationns (UTD, Standards EN, ISO etc). All countries have different rules for how hot or cold tap water should be.

Ormandy recommends that the hot water temperature is at least 55°C and a hot water recirculation, not less than 50°C. At a temperature below 50°C, there is a risk of bacterial growth. Note, that at temperatures above 60°C, the risk of scalding increases.

Set points above 63°C, result in an increased risk of precipitation of lime scaling on the surfaces of the heat exchanger.

#### 9.2 Time Programs

The time programs used in Aquamodule are adjusted the same way.

The time programs:

- SP\_T\_Sec\_Outlet, to be found in the menu S1 Menu Secondary Outlet. It is to set the DHW temperature
- ThTr\_Activated to be found in Thermal Treatment Menu, to activate a thermal treatment (1 sensor mode).

The time program has two different temperature modes, week-temperature or weekend-temperature. Define for each day of the week which mode to use.

By default the weekend-temperature mode has the same settings as the week-temperature mode. It is even possible to customize the temperature programs with special dates (holidays periods or free days).

Each temperature mode can have a number of different times set per day. For each time a different temperature can be selected, that are then in effect until the next time occurs. If only one time is set, the program will run with the selected temperature.

#### 9.3 **Changing Time and Temperature in a Time Program**

By default the DHW set point (SP\_T\_Sec\_Outlet), is set to 60°C by default, at any time, all the days of the week.

Add extra temperature set points at different times of the day.

These changes will be reported to all days within the time program week, excluding the time program; weekend.

- 1. Use the wheel and mark the clock logo. Press the wheel.
- 2. Mark the day you want to change. Press the wheel.

Now you can choose to:

a) Change a time or temperature.

Mark the line and press the wheel. Change the value by turning the wheel.

Confirm the new setting by pressing the wheel.

b) Add a new time or set point; choose



c) To delete a time or set point; choose

In this example the set point is 60°C at 22h00.

You can choose to reduce the temperature during the night, in this example the night temperature is set to 55°C.

#### 9.3.1 Special Days

Exception days, so called special days, can be defined. The calendar in the controller, controls the exceptions that can be selected in the Time program. Exception days override the weekly schedule.

- 1. In the Main screen menu, mark 'Spcl.Days' and press the wheel. Choose between:
- Annual holiday periods where you have to specify beginning date, end date and DHW set point. This mode is applicable to schools, offices and so on.
- Bank Holiday special days during the year where set points can be different eg: Christmas, New Year.
- Daily programs particular days where you want to change the temperature set point.

| S1 Menu.Sec Outlet | •          |
|--------------------|------------|
| SP_T_Sec_Outlet    | $\bigcirc$ |
| 60.0 °C            |            |



| Week       | <b>□</b> + |
|------------|------------|
| 06:00 SP_T | _Sec 60.0  |
| 22:00 SP_T | _Sec 60.0  |

| Week              | +  |
|-------------------|----|
| 06:00 SP_T_Sec 60 | °C |
| 22:00 SP_T_Sec 60 | °C |



| Main    | Spcl.Day |
|---------|----------|
| Mo Week |          |



#### 9.4 Making a Quick Temperature Change

You can quickly define a "one time" temperature change, a period of the day with a different setting. When the change period has expired, the temperature set point goes back to a standard time schedule program.

1. In the home-screen, mark the hour glass icon and choose it, by pressing the wheel.

| S1 Menu.Sec Outlet |    |  |
|--------------------|----|--|
| SP_T_Sec_Outlet    | 00 |  |
| 60.0 °C            |    |  |

2. Define the starting and ending time, and the temperature set point value.

| SP T Sec Outlet |      |    |
|-----------------|------|----|
| 11:47 to        | 2:30 |    |
| Value:          | 55.0 | °C |

# 10. Technician Menu, Total Read and Write level

In the Technician menu you can: .

- Make settings for the secondary outlet temperature.
- Enable/disable functions like Eco, booster, thermal treatment.
- Enable/disable the fouling function (option).

You need to be logged in to:

- See all sub-menus and change pre-set values.
- Have full read and write access in the technician menu.

Note: You will be automatically logged out after ten minutes if no data has been entered.

#### 10.1 **Login**

- 1 Mark the lock 💼 in the upper right corner of the screen and press the wheel.
- 2 Enter: 3333, to access the technician level.

Note: You will automatically logout after ten minutes if no data has been entered.

#### 10.2 The Technician Main Menu

To enter the Main menu you press the 🙆 key.

The grey marked parameters or menus are not available in the Aquasave application. Their value does not have any impact on the Aquasave.

| Main Menu          |           |                                         |
|--------------------|-----------|-----------------------------------------|
| T_Secondary_Out    | Read Only | Measured temperature ECS                |
| S1_PID_Setpoint    | Read Only | DHW temperature setpoint                |
| T_Secondary_Inlet  | Read Only | N/A                                     |
| T_Primary_Outlet   | Read Only | The temperature measured by S3 (option) |
| T_Primary_Inlet    | Read Only | N/A                                     |
| T_Recovery1        | Read Only | N/A                                     |
| T_Recovery2        | Read Only | N/A                                     |
| T_Outdoor          | Read Only | N/A                                     |
| Configuration      | Sub Menu  | See 7.3 configuration menu              |
| S1 Menu Sec.Outlet | Sub Menu  | See 7.4 S1 Menu Secondary Outlet        |
| S2 Menu Sec.Inlet  | Sub Menu  | N/A                                     |
| Delta T (S3-S2)    | Sub Menu  | N/A                                     |
| S4 Menu Prim Inlet | Sub Menu  | N/A                                     |
| S5 Menu Outdoor T  | Sub Menu  | N/A                                     |
| Thermal Treatment  | Sub Menu  | See 7.5 Thermal Treatment Menu          |
| SAFETY Function    | Sub Menu  | See 7.6 Safety Function                 |
| Eco Booster Fcts   | Sub Menu  | See 7.7 Eco-Booster Function            |
| Fouling Function   | Sub Menu  | See 7.8 Fouling Function                |
| Pumps Menu         | Sub Menu  | N/A                                     |
| Solar Menu         | Sub Menu  | N/A                                     |
| Aquaprot_Heating   | N/A       | N/A                                     |
| 230V Triac Menu    | Sub Menu  | See 230V Triac Menu                     |
| Auto Test          | Sub Menu  | See Autotest Menu                       |
| Clear Alarm(s)     | Sub Menu  | See Clear Alarm Menu                    |

- Start an auto test.
- Clear alarm.

# 10.3 Configuration Menu

NOTE: After resetting the controller, this sub menu should be accessed to configure pumps' number.

| Parameter                              | Factory Setting | Optional Setting                     | Description                                                                                                                                                  |
|----------------------------------------|-----------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type 0 = First 1 = Eff                 | 0               | 0 = AquaFirst<br>1 = AquaEff         | Set to 0                                                                                                                                                     |
| S5 Active Heating                      | 0               | 0 Disables /<br>1 Enables heat curve | Set to 0                                                                                                                                                     |
| Cooling Mode AO1                       | 0               | 0 = Heating/<br>1 = Cooling Mode     | Set to 0                                                                                                                                                     |
| P12 Nbr of Pumps                       | 1/0             | 0/1/2                                | Primary pump(s) number                                                                                                                                       |
| Min Speed P1P2                         | 40              | 10>100                               | N/A                                                                                                                                                          |
| P34 Nbr of Pumps                       | 1               | 0/1                                  | Set to 1                                                                                                                                                     |
| Modbus Factor                          | 1               | 1/10/100                             | To set displayed decimals on Modbus<br>values.<br>1=integer value, e.g., 58°C<br>10=1 decimal, e.g., 583/10=58,3°C<br>100=2 decimals, e.g., 5836/100=58,36°C |
| Relay 1 function*)                     | 1               | 0.7                                  | 0=No action<br>1=General Default (GD)<br>2=High temp alarm (HA)<br>3=Eco function (E)<br>4=Booster function (B)                                              |
| Relay 2 function*)                     | 2               | 0.7                                  | 5=Thermal Treatment (TT)<br>6=Pump Fault (PF)<br>7=Tank loaded (TL) N/A                                                                                      |
| Renewable Config<br>0:N 1:SF 2:AA 3:AP | Кеер 0          | N/A                                  | N/A                                                                                                                                                          |
| APilot rev 0=Off 1=On                  | Кеер 0          | N/A                                  | N/A                                                                                                                                                          |
| SP distrib 0=1 1=E                     | 0               | N/A                                  | N/A                                                                                                                                                          |
| SW AL Version                          | 4.0             | N/A                                  | Firmware Version                                                                                                                                             |

\*) Both relay 1 and 2 are programmable

# 10.4 S1 Menu Secondary Outlet

| Parameter             | Factory<br>Default Setting | Optional Setting                                                        | Description                                                      |
|-----------------------|----------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|
| SP_T_Sec_Outlet       | 60°C                       | DHW Setpoint                                                            | Change setpoint value in clock program                           |
| Delta T S1 HiAlm      | 10°C                       | 0 - 50                                                                  | High temperature Alarm if Ts1<br>SP_T_Sec_Outlet+Delta Ts1 HiAlm |
| High T Alarm Delay    | 1 min                      | 0 - 60                                                                  | High temp alarm is effective after this time.                    |
| High Alarm Auto Reset | 0                          | 0 / 1                                                                   | 0 = MANUAL alarm clear /<br>1 = AUTO alarm clear                 |
| High_Alm_Reset        | Off                        | Off / On                                                                | Put ON to clear a high temp alarm, then put off.                 |
| P_Main AquaFirst      | 40                         | 0 <p< 200°c<="" td=""><td>P to be less reactive/more accurate</td></p<> | P to be less reactive/more accurate                              |
|                       | (-200 to 200)              | Negative values in cooling                                              | ↓ P to be less reactive (be careful of<br>"pumping" effect).     |
| I_Time AquaFirst      | 15                         | 0 - 200 sec                                                             | P to be less reactive                                            |
|                       |                            |                                                                         | ↓ P to be more reactive (be careful of<br>"pumping" effect).     |
| D_Time AquaFirst      | 2 sec                      | 0 - 200 sec                                                             | Derivative                                                       |
| P_Main AquaEff        | 80                         | 0 <p< 200°c<="" td=""><td>N/A</td></p<>                                 | N/A                                                              |
|                       | (-200 to 200)              | Negative values in cooling                                              |                                                                  |
| I_Time AquaFirst      | 15                         | 0 - 200 sec                                                             | N/A                                                              |
| D_Time AquaFirst      | 2 sec                      | 0 - 200 sec                                                             | N/A                                                              |

#### 10.5 Thermal Treatment Menu

This function is activated as per a time program. It is disabled by default.

Activate it by setting TrTh\_Activated to ON.

The clock program logically activates it automatically or not.

The thermal treatment starts when the thermal treatment is switched on inside the clock program and ends at the end of the thermal treatment duration (Therm Tr Duration), or at the end of the authorised period, when thermal treatment is OFF in the clock program.

The user has to define a one (1) sensor mode - fixed duration as per Therm. Tr duration parameter.

| Parameter                    | Factory<br>Default Setting | Optional Setting            | Description                                                             |
|------------------------------|----------------------------|-----------------------------|-------------------------------------------------------------------------|
| ThTr_Setpoint                | 70°C                       |                             | Usual value                                                             |
| TrTh_Activated               | Off                        | Off / On                    | Enable or disable the function as per clock program.                    |
| Sensor_Nbr<br>NS 0=Auto/1/2S | Auto                       | Auto/1 sensor/<br>2 sensors | Use 1 sensor (Set to 1)                                                 |
| ThermTr duration             | 1 min                      | 1-240 min<br>(4 hours max)  | Adjust value according to the installation<br>+ buffer vessel capacity. |
| Fixed duration<br>(1 sensor) | 1                          | 0/1                         | Set to 1                                                                |
| TT Max try time              | 1 min                      | 1-240 min                   | N/A                                                                     |
| DeltaT S1S2 ThTr             | 7°C                        | 1 - 20°C                    | N/A                                                                     |
| Inhibition time              | 30 min                     | 0-180 (0 to 3 hours)        | High temp alarm inhibition time after thermal treatment                 |

#### 10.6 Safety Function

This function activates all the pumps power relays at the same time, without considering ipsothermic contacts' inputs.

Note: This function can be enabled from base access level.

| Parameter    | Factory Default Setting | Optional Setting |
|--------------|-------------------------|------------------|
| SAFETY_Speed | 75%                     | Not used         |
| SAFETY FCT   | Off                     | Off / On         |



In case of high temperature alarm on S1, the primary pumps are stopped, even if the function is activated.

#### 10.7 Eco-Booster Function

• **ECO**: When the control valve is sufficiently closed (valve Hysteresis) during a sufficient long time (ECO delay), primary pump switches off and primary mixing valve close down.

The system is switch ON when S1 temperature has gone down more than the set value of "Eco Hysteresis".

If secondary pumps are connected (SS/DS/DD series), they are still in operation during the Eco function.

Booster: Function is not available in AquaCompact.

| Parameter                        | Factory<br>Default Setting | Optional Setting              | Description                                                                            |
|----------------------------------|----------------------------|-------------------------------|----------------------------------------------------------------------------------------|
| 1: Eco 2: Booster<br>3: EcoBoost | 0                          | 0/1/                          | 0 = No function<br>1 = Eco Function only<br>2 = N/A<br>3 = N/A                         |
| Fct_Selection                    | Normal                     | Normal/Eco/Boost/<br>EcoBoost | Playback function selected in 1:<br>Eco 2: Booster 3: EcoBoost                         |
| Eco Delay                        | 5 min                      | 1-30 min                      | Scan time before activating function if possible.                                      |
| Eco Hysteresis                   | 5°C                        | 1 - 20°C                      | Temperature range in which the function is applicable.                                 |
| Valve Hysteresis                 | 10%                        | 0 - 80%                       | Maximum opening of the valve before switching function.                                |
| Booster Delay                    | 2 sec                      | 2 - 200 sec                   | Time delay between the Booster func-<br>tions stop and the second pump stops<br>(N/A). |
| Booster Gradient                 | 2°K/s                      | 1 - 20°K/sec                  | Minimum temperature fall speed at which the function operates. (N/A)                   |

#### 10.8 Fouling Function

Scaling function can be activated when the sensor S3 is connected. Accessing the scaling-menu requires login at Technician level.

If the temperature in S3 is too high for a long time this function activates an alarm that consider the heat exchanger fouled.

| Parameter         | Factory<br>Default Setting | Optional Setting | Description                                            |
|-------------------|----------------------------|------------------|--------------------------------------------------------|
| Fouling alm activ | 0                          | 0/1              | 0 = disabled / 1 = enabled                             |
| Fouling_alarm     | Normal/Default             |                  | Read only                                              |
| SP_Fouling        | 65°C                       | 60-80            | Depends on the HE types and Primary inlet temperature. |

#### 10.9 230V Triac Menu

Accessing the 230C Triac-menu, requires login at Technician level.

This menu allows using a 230VAC Triac output.

| Parameter           | Factory<br>Default Setting | Optional Setting | Description                                             |
|---------------------|----------------------------|------------------|---------------------------------------------------------|
| Multi P             | Off                        | Off / On         | Enable or disable the 230V output as per clock program. |
| Pulse Duration      | 5 sec                      | 1-3600           | 230V pulse duration in seconds                          |
| Bypass 0=Off, 1 =On | N/A                        | N/A              | N/A                                                     |
| DeltaT bypass       | N/A                        | N/A              | N/A                                                     |

The 230V electrical output can be configured as a pulse function. For example it can be used to shortly activate an electrical drain valve.

In this configuration, the pulse duration can be programmed to be active a day, week or special day. For example each Sunday at 10h00 for 5 seconds.

Connected device must not exceed 230VAC 1A.



#### 10.10 Autotest Menu

Accessing the Autotest menu requires login at Technician level.

This submenu allows testing analog (contacts) and digital (0-10V) outputs, that mange pumps start/stop, both programmable relays, 230V Triac output and valve signal. It is possible to run an automatic sequence or to test manually each output individually.

In case of Auto test (automatic sequence), it is possible to reduce or increase tests' temporizations. Pump, valve, and relays test times can be adjusted individually. The time test value will impact on the total auto test time sequence.

| Parameter        | Factory<br>Default<br>Setting | Optional Setting | Description                                                          |
|------------------|-------------------------------|------------------|----------------------------------------------------------------------|
| Start Auto Test  | 0                             | 0/1              | Set 1 to start auto test. When finished, the value goes back to zero |
| Pump_Fault_Reset | Off                           | Off/On           | Set to On after an Auto test.                                        |
| Pump time test   | 4 sec                         | 1-600 sec        | Pumps activated this time value                                      |
| Valve time test  | 4 sec                         | 1-600 sec        | Valve activated this time value                                      |
| Alarm time test  | 4 sec                         | 1-600 sec        | Relays 1 and 2 test                                                  |
| Cmd_P1           | On/Off                        | On/Off           | Activates Pump 1 relay                                               |
| Cmd_P2           | Off/On                        | On/Off           | Activates Pump 2 relay                                               |
| Speed_P1P2       | xx %                          | 0-100 %          | Not used                                                             |
| Cmd_P3           | On/Off                        | On/Off           | Activates Pump 3 relay                                               |
| Cmd_P4           | Off/On                        | On/Off           | Activates Pump 4 relay                                               |
| Speed_P3P4       | xx %                          | 0-100 %          | Not used                                                             |
| Relay 2          | Off                           | On/Off           | Activates relay 2                                                    |
| Reay 1           | Off                           | On/Off           | Activates relay 1                                                    |
| Triac_Output     | Off                           | On/Off           | Activates 230V Triac Output                                          |
| Valve signal     | xx %                          | 0-100 %          | Valve opening / closing                                              |
| Valve2 signal    | xx %                          | 0-100 %          | N/A                                                                  |
| Valve_DO         | xx %                          | 0-100 %          | N/A                                                                  |

The Auto test, described in the picture, is a general test procedure. It may vary depending on connected components.



**Note**: A pump fault may occur after Auto test. In this case, clear the alarm according to *10.11 Clear alarm menu* 

#### 10.11 Clear Alarm Menu

Accessing the Clear Alarm menu, requires login at Technician level.

All alarms are cleared the same way.

| Parameter        | Factory<br>Default Setting | Optional Setting | Description                                                                                                                                                   |
|------------------|----------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High_Alm_Reset   | Off                        | Off / On         | Select <b>On</b> to clear the alarm, then return<br>to <b>Off</b> or wait a few seconds for<br>automatic return to <b>Off</b> .<br>Off: the alarm is cleared. |
| Pump_Fault_Reset | Off                        | Off / On         | Select <b>On</b> to clear the alarm, then return<br>to <b>Off</b> or wait a few seconds for<br>automatic return to <b>Off</b> .<br>Off: the alarm is cleared. |

 $|\mathfrak{O}|$ 

# 11. Service Menu 🔇

Press the 🕥 key to enter the service menu. In the service menu, you can:

- Change password for technician level.
- Trending parameters.
- Display the trend buffer.
- Check operating hours.

From Point Data sub-menu, you can, read or change binary or analog outputs to start/stop a pump, open/ close control valve for example.

#### 11.1 Change Password for Technician Level

Note: To change the password, you need the password for the Technician level, level 3.

- 1. Press 💊 key to access to Service Menu. Go to "Login Installer". then press the wheel.
- 2. Enter the current password. Press the wheel to validate.
- 3. Mark "Change password", then press the wheel.

| Service | Menue |
|---------|-------|
| Continu | •     |

Login Installer

| Enter your password |
|---------------------|
| ****                |
| Next                |
| Change Password     |

| Go to Level 3 line and then click on the password to |  |
|------------------------------------------------------|--|
| change it. Press the wheel to validate.              |  |

| Change Password   |  |  |
|-------------------|--|--|
| Level 2: 2222     |  |  |
| Level 3: 3333     |  |  |
| Installer Service |  |  |

Note: Level 2 password is not in use.

#### 11.2 Login Installer

4.

| Login Installer | ****            | Enter 3333 if not in technician mode |
|-----------------|-----------------|--------------------------------------|
|                 | Change password |                                      |

# 11.3 Menu Continued

| Menu     | Sub-menu         | Sub menu                                | Description                                                                              |  |
|----------|------------------|-----------------------------------------|------------------------------------------------------------------------------------------|--|
| Continue | Operating hours  |                                         | Viewing operating hours of internal parameters.                                          |  |
|          | Trending         | Points in trend                         | Selected variables to trend, for example, temperature sensors.                           |  |
|          |                  | Display trend Buffer                    | View the records                                                                         |  |
|          | Interface Config | C-bus active                            | Factory pre-set                                                                          |  |
|          | (com)            | Ctr#1 9600                              | Factory pre-set                                                                          |  |
|          |                  | B-port 9600                             | Factory pre-set                                                                          |  |
|          |                  | Append bus number<br>to data point name | Activated                                                                                |  |
|          |                  | RF Teach in (N/A)                       | Factory pre-set                                                                          |  |
|          |                  | Modbus                                  | Device ID:10Baud rate:9600Parity:NoneNo. stop bits:1                                     |  |
|          | Time Programs    | Solar                                   | Not used                                                                                 |  |
|          |                  | Main                                    | It is SP_T_Sec_Outlet (main temperature pro-<br>gram). <i>See menu Secondary Outlet.</i> |  |
|          |                  | TSP_Amb                                 | Not used                                                                                 |  |
|          |                  | Multi Pulse                             | See 230V Triac Menu                                                                      |  |
|          |                  | Therm. treatment                        | See Thermal Treatment Menu                                                               |  |
|          | Point Data       | Internal                                | parameters +I/O visualisation                                                            |  |
|          |                  | Analog Input                            | Sensor Values                                                                            |  |
|          |                  | Pseudo Analog                           | Can be set points or internal parameters                                                 |  |
|          |                  | Analog Output                           | Valve and pump output signals                                                            |  |
|          |                  | Binary Input                            | Ipsothermic contacts from pumps, remote contact                                          |  |
|          |                  | Pseudo Binary                           | Internal flags                                                                           |  |
|          |                  | Binary Output                           | Pump start / stop contacts, relays contacts, 230V Triac                                  |  |
|          |                  | Totalizer                               | N/A                                                                                      |  |
|          |                  | Remote Analog                           | N/A                                                                                      |  |
|          |                  | Remote Binary                           | N/A                                                                                      |  |
|          | System Data      | System information                      |                                                                                          |  |
|          |                  | Parameters                              | N/A                                                                                      |  |
|          |                  | Date / Time                             | Clock settings                                                                           |  |
|          |                  | System Info                             | Hardware / software info (version, date)                                                 |  |
|          |                  | Interface Config                        | Sccess to Modbus parameters. See Modbus                                                  |  |
|          |                  | DDC Times                               | Programs time constant                                                                   |  |
|          |                  | Flash Memory                            | Info on flashing. Allows saving all settings. It can be reloaded after a Reset.          |  |

#### 11.4 **Operating Hours**

Operating hours for the following variables can be checked:

- Therm\_Protec\_P1/P2/P3/P4
   AFF\_leg\_active
- Cmd\_P1/P3
- High\_Temp\_Alarm

SAFETY\_FCTMulti P

Main \_Alarm

• ECO

For more information and descriptions, see Parameter list.

1. Press 🛇 key to access to Service Menu, then go to "continue".

2. Select "Operating Hours" in the menu.

The first time you enter this menu, the list is empty.

- 3. To add a variable to trend, choose
- 4. Mark one variable to follow and press the wheel.

| Service | Menue |
|---------|-------|
|---------|-------|

Continue

**Login Installer** 

Service

**Operating hours** 

Trending

Interface Config

**Time Program** 

Activate Oper. Hours
Cmd Distant
Therm\_Protec\_P1

Therm\_Protec\_P2

**Operating Hours** 

Activate Oper. Hours Therm Protec\_P4 Cmd\_P1 Cmd\_P2

5. Validate the variable by ticking in the Operating Hours box. If this box is empty the variable is in the list, but it is not recorded.

When you go back in the menu (C Key), you can see the list with "Cmd\_P1" parameter, and on the right side, the operating hours.





For more details, click on the line to open the sub-menu. Here you can read that P1 has been operating less than 1 hour, has been switched one time and status is On.

Proceed the same way to add extra variables.

| Cmd_P1                 |              |
|------------------------|--------------|
| <b>Operating Hours</b> | $\checkmark$ |
| Hours:                 | 0            |
| Switches:              | 1            |
| Status: On             |              |

#### 11.5 **Trending Parameters**

A lot of different variables can be recorded or trended. It can be temperatures' measurement, valves, or pumps' signals, ipsothermic contacts, alarms, thermal treatments etc.

- 1. Press 📎 key to access to Service Menu, then click on "Continue.
  - Service Menue

Continue

Service

Trending

Trending

**Login Installer** 

**Operating hours** 

**Interface Config** 

**Time Program** 

Points in Trend

**Display Trend Buffer** 

2. Select "Trending" in the menu.

- 3. Select "Points in Trend"; choose The first time you enter this menu, the list is empty.
- 4. To add a variable to trend; choose  $\begin{bmatrix} + \\ + \end{bmatrix}$
- 5. Mark the variable to follow and press the wheel. In this example the Secondary outlet temperature, S1.

- Set Points in Trend Pilot\_Signal Pt1 Pt2 S1
- 6. Validate the variable by ticking in the Trend Log box. If this box is empty the variable is in the list, but it is not record.

There are two different ways to record (method a and b):

a) Only the temperature change is recorded. This saves memory and allows a longer sampling period compared to method b.

Select the record hysteresis. In our case, every 1°C temperature change is recorded. You can change the hysteresis value by clicking on it.



| b) | Record on a time base, whether the temperature changes or not.   |
|----|------------------------------------------------------------------|
|    | Note that this method consumes memory, especially if a           |
|    | long-time base is selected. Here is the time base selected to 10 |
|    | minutes recording (1 record every 10 minutes).                   |

For method "a" set "Trend cycle" different to zero, for method "b", set "Trend Hyst" different to zero.

#### 11.6 Display the Trend Buffer

- 1. Press 📎 key to access to Service Menu, then click on "Continue".
- 2. Select "Trending" in the menu.

- 3. Select "Display Trend Buffer".
- 4. Select the variable to display, S1 in this case, and press the wheel.

Date, time and temperature at the time, can be read. For example, on 21st of September at 14h22, the temperature of S1 was  $58^{\circ}C$ 

| S1           |               |
|--------------|---------------|
| Trend Log:   | $\checkmark$  |
| Trend Hyst:  | 1             |
| Trend Cycle: | <b>10</b> min |

| Service Menue   |  |
|-----------------|--|
| Continue        |  |
| Login Installer |  |

| Service          |
|------------------|
| Operating hours  |
| Trending         |
| Interface Config |
|                  |

Trending Points in Trend Display Trend Buffer

| Trend Buffer |  |
|--------------|--|
| S1           |  |

| S1    |       |    |
|-------|-------|----|
| 21-09 | 14:22 | 58 |
| 21-09 | 14:22 | 60 |
| 21-09 | 14:22 | 59 |
| 21-09 | 14:22 | 57 |

#### 11.7 **Point Data**

From the menu Point Data, you can:

- Read or change binary or analog outputs
- Start and stop pumps
- Open or close control valve

This sub menu is very similar with Autotest, as it perfoorms same actions in manual mode.

NOTE: Once the tet is manually done and finished, remember to put the point on Automatic mode, logo

# 12. Alarm Menu 🥼



Alarm indication: Is Volt Free Contacts (VFCs), 2 Amps maxi, each under 230 V.

key for access to Alarm menu. The menu contains four Press different lists:

**Alarm Buffer** 

Lists all events with, date, time and type of event.

**Points in Manual** .

> List of all points actually in manual mode should be empty. When point values are forced for tests, e.g., they should be placed in automatic mode at the end.

- Points in Alarm Lists all events with alarm condition.
- **Critical Alarms** •

Lists all alarms with critical alarm condition. Critical alarms are important alarms, like high temp.

**Non-Critical Alarms** 

> Lists all non-critical alarm condition. These alarms are more information, like power failure.

Press a line to see more information about the alarm.

For example, in the alarm buffer, you can read:

| 15.52 | SAFETY_FCT   |
|-------|--------------|
| 15.51 | SAFETY_Speed |
| 15.41 | SAFETY_Speed |
| 15.40 | SAFETY_FCT   |

Note that the alarms are listed with the latest at the top.

| Meaning                                                                               |
|---------------------------------------------------------------------------------------|
| The safety function has been set to auto mode, stopping the safety function at 15h52. |
| The safety speed has been set in Auto mode at 100% at 15h51.                          |
| The speed pump has been set manually to 75% at 15h41.                                 |
| The safety function has been activated manually the 19th of June 2012 at 15h40.       |
|                                                                                       |

# **13.** Parameter List

There are more than 100 different variables used in the controller. Most of them are used for internal programs and calculations. Here we describe the main points.

| Name             | Description                                                    | Unit   | Modbus<br>Address* |
|------------------|----------------------------------------------------------------|--------|--------------------|
| Therm_Protec P1  | Ipsothermic input from P1 pump                                 | 0/1    | 11                 |
| Therm_Protec P3  | Ipsothermic input from P3 pump                                 | 0/1    | 13                 |
| PD_Cmd_P1        | P1 command. It is the pump start/stop output                   | On/Off | 15                 |
| PD_Cmd_P3        | P3 command. It is the pump start/stop output                   | On/Off | 17                 |
| PriP1_Alarm_On   | Primary pump 1 default                                         | 0/1    | 19                 |
| PriP2_Alarm_On   | Primary pump 2 default                                         | 0/1    | 20                 |
| Sec_P3_Fault     | Secondary pump 3 default                                       | 0/1    | 25                 |
| PDMain_Alarm     | General Alarm                                                  | 0/1    | 28                 |
| High_Temp_Alarm  | High temperature alarm on S1 sensor                            | 0/1    | 29                 |
| Fouling_Alarm    | Fouling heat exchange alarm                                    | 0/1    | 30                 |
| Ret_High_Alarm   | High temperature alarm on S2                                   | 0/1    | 31                 |
| ThermTr_Alarm    | Thermal treatment failed                                       | 0/1    | 32                 |
| SAFETY_FCT       | The safety function state                                      | 0/1    | 35                 |
| Disp_Leg_Active  | Thermal treatment running                                      | 0/1    | 36                 |
| Remote_Control   | The unit is remotely controlled                                | 0/1    | 37                 |
| ECOMode          | ECO function activated                                         | 0/1    | 42                 |
| Tank Load        | Tank loaded (Sensor S2 need to be connected)                   | 0/1    | 44                 |
| PA10_Valve1      | Primary valve actuator                                         | 0-100% | 47                 |
| S1_10            | Secondary outlet temperature measurement (S1 sensor)           | °C     | 50                 |
| S2_10            | Secondary Inlet temperature measurement (S2 sensor if present) | °C     | 51                 |
| S3_10            | Primary Outlet temperature measurement (S3 sensor if present)  | °C     | 52                 |
| S1_PID_SP_10     | Current temperature set point of the main control loop on S1   | °C     | 62                 |
| High_Alm_Reset   | To reset a high temperature alarm                              | On/Off | 201                |
| Pump_Fault_Reset | Resets a pump fault                                            | On/Off | 202                |
| SP_T_Sec_Outlet  | Domestic Hot water Setpoint (S1)                               | °C     | 211                |
| THTR_Setpoint    | Thermal treatment temperature set point                        | °C     | 213                |
| PD_Triac_Output  | 230V Triac output state                                        | On/Off | 33                 |

## 14. Factory Reset



After a reset, the controller must be configured,

see Section 10.3, Configuration menu. Especially the number of pumps must be configured.

- 1. Press both 🗞 and C for 5 seconds. Display appears as shown here.
- 2. Rotate the wheel; select the last line (program name with a star at the end).
- 3. Press the wheel a few seconds and the program will start after 1 minute.

Settings are now factory settings.

Note that on some software versions, the displayed language can be changed.

- 1. Rotate the wheel clockwise to display all available languages.
- 2. Select and press the wheel.
- 3. Then, press on "Factory" line and press the wheel. The controller will restart.

**NOTE**: If another line is available, it contains previous set parameters and function, before Reset was done. You can then recover all the parameters.

| 15-10-2012   | 2 13.41      |  |
|--------------|--------------|--|
| Wiring Check |              |  |
| C-Bus        | $\checkmark$ |  |
| CTR# 1       | 19200        |  |
| AL 09 2ST    | 12-10-12*    |  |

| 02/07/2013       | 15:27        |  |  |  |  |
|------------------|--------------|--|--|--|--|
| Startup          |              |  |  |  |  |
| C-Bus config     | $\checkmark$ |  |  |  |  |
| CTR# 1           | 38400        |  |  |  |  |
| Select Language: |              |  |  |  |  |

| English (1) |
|-------------|
| French      |

# 15. Modbus

#### 15.1 Modbus Communication

The controller includes a Modbus slave communication protocol - type Modbus RTU RS485.

Connection between BMS (building management system) and Micro 3000 requires two polarized wires on C+ and C-, respectively labelled 25 and 26 on controller C Bus terminal.

The connection via shielded cable is not required but can be performed with the terminal 24. For this, it is necessary to unscrew the front panel.





#### 15.2 Connecting Multiple Micro 3000 Control Boxes



#### **Rules to respect**

Max length between BMS and farer control box: 500 meters

Connection continuity (C+ and C-) must be done directly on the controller C Bus terminal, without using derivation boxes. Respecting this, there are two wires per terminal, except in the last control box.



#### 15.3 Change Modbus Parameters

- 1. Press 💊 key to access to Service Menu. Go to "Login Installer". then press the wheel.
- 2. Enter the current password. Press the wheel to validate.
- 3. Mark "Next", then press the wheel.

Select "Interface Config".

Select "Modbus".

Select the variable to change.

Press the wheel to validate.

- Device ID = Modbus Address of the controller
- Baud Rate Com speed
- Parity = None (0) / Even / Odd
- No of Stop Bits = 0/1

| -  | -     |       |    |
|----|-------|-------|----|
| 50 | rvico | Mon   |    |
| 36 | IVICC | 11211 | uc |
|    |       |       |    |

- Continue
- Login Installer

Enter your password

\*\*\*\*

Next

**Change Password** 

| Service          |
|------------------|
| Operating hours  |
| Trending         |
| Interface Config |
|                  |

| Interface Config     |  |  |  |  |
|----------------------|--|--|--|--|
| Append bus number to |  |  |  |  |
| data point name 🗸    |  |  |  |  |
| RF Teach-in          |  |  |  |  |
| Modbus               |  |  |  |  |

| Modbus Communication |      |  |  |  |
|----------------------|------|--|--|--|
| Device ID: 10        |      |  |  |  |
| Baud Rate:           | 9600 |  |  |  |
| Parity:              | NONE |  |  |  |
| No. Stop Bits: 1     |      |  |  |  |

#### 15.4 Modbus Slave Communication Parameters

| Modbus<br>Parameters | Speed      | 9600 |
|----------------------|------------|------|
|                      | Bit Number | 8    |
|                      | Stop bit   | 1    |
|                      | Parity     | None |
|                      | Mode       | RTU  |

In case of multiple controllers, change ModBus slave number.

| Read Only Digital  |                    |       |             |      |               |                         |
|--------------------|--------------------|-------|-------------|------|---------------|-------------------------|
| Modbus Points      | Modbus<br>Address* | Туре  | Sub<br>Type | Mode | Value         | Comment                 |
| PD_Cmd_P1          | 15                 | HR_16 | BOOL        | R    | 0=Off, 1=On   | Command P1              |
| PD_Cmd_P3          | 17                 | HR_16 | BOOL        | R    | 0=Off, 1=On   | Command P3              |
| PriP1_Alarm_On     | 19                 | HR_16 | BOOL        | R    | 0=OK, 1=Alarm | Pl Fault                |
| PriP2_Alarm_On     | 20                 | HR_16 | BOOL        | R    | 0=OK, 1=Alarm | P2 Fault                |
| SecP3_Alarm_On     | 23                 | HR_16 | BOOL        | R    | 0=OK, 1=Alarm | P3 Fault                |
| PD_High_Alarm      | 27                 | HR_16 | BOOL        | R    | 0=OK, 1=Alarm | S1 High Temp Alarm      |
| PD_Main_Alarm      | 28                 | HR_16 | BOOL        | R    | 0=OK, 1=Alarm | General Default         |
| Fouling_Alarm      | 30                 | HR_16 | BOOL        | R    | 0=OK, 1=Alarm | Fouling Alarm (S3)      |
| Therm Tr Alarm     | 32                 | HR_16 | BOOL        | R    | 0=OK, 1=Alarm | Therm.Treat. Failed     |
| PD_Triac_Output    | 33                 | HR_16 | BOOL        | R    | 0=Off, 1=On   | 230V Triac. output      |
| SAFETY_FCT         | 35                 | HR_16 | BOOL        | R    | 0=Off, 1=On   | Safety Function         |
| Disp_Leg_Active    | 36                 | HR_16 | BOOL        | R    | 0=Off, 1=On   | Therm. Treat. Ongoing   |
| Remote_Control_Rev | 37                 | HR_16 | BOOL        | R    | 0=Off, 1=On   | Remote Control          |
| AFF_FD20           | 39                 | HR_16 | BOOL        | R    | 0=Off, 1=On   | Heating Mode            |
| AFF_FD22           | 40                 | HR_16 | BOOL        | R    | 0=Off, 1=On   | Cooling Mode            |
| EcoMode            | 42                 | HR_16 | BOOL        | R    | 0=Off, 1=On   | ECO Activated           |
| PD_Pumps_Fault     | 43                 | HR_16 | BOOL        | R    | 0=Off, 1=On   | Synthesis Pump(s) Fault |
| Tank_Load          | 44                 | HR_16 | BOOL        | R    | 0=Off, 1=On   | Tank Loaded             |
| (16 bit integer)*  |                    |       |             |      |               |                         |

| Read Only Analogic |                    |       |          |      |       |                         |
|--------------------|--------------------|-------|----------|------|-------|-------------------------|
| Modbus Points      | Modbus<br>Address* | Туре  | Sub Type | Mode | Value | Comment                 |
| SW AL Version      | 34                 | HR_16 | int16    | R    |       | Software Version        |
| PA10 valve1        | 47                 | HR_16 | int16    | R    | %     | Control valve 1 signal  |
| S1_10              | 50                 | HR_16 | int16    | R    | °C    | Sensor 1 measurement    |
| S2_10              | 51                 | HR_16 | int16    | R    | ٥C    | Sensor 2 measurement*** |
| S3_10              | 52                 | HR_16 | int16    | R    | °C    | Sensor 3 measurement*** |
| S1_PID_SP_10       | 62                 | HR_16 | int16    | R    | °C    | Calculated S1 setpoint  |
| (16 bit integer)*  |                    |       |          |      |       |                         |

| Read-Write Digital                                                                                             |                    |       |          |      |                                                            |  |
|----------------------------------------------------------------------------------------------------------------|--------------------|-------|----------|------|------------------------------------------------------------|--|
| Modbus Points                                                                                                  | Modbus<br>Address* | Туре  | Sub Type | Mode | Comment                                                    |  |
| High_Alm_Reset                                                                                                 | 201                | HR_16 | BOOL     | R/W  | 1=Reset fault. Pulse point necessary,<br>30 seconds On/Off |  |
| Pump_Fault_Reset     202     HR_16     BOOL     R/W     1=Reset fault. Pulse point necess<br>30 seconds On/Off |                    |       |          |      |                                                            |  |
| (16 bit integer)*                                                                                              |                    |       |          |      |                                                            |  |

| Read-Write Analogic |                    |       |          |      |       |                            |
|---------------------|--------------------|-------|----------|------|-------|----------------------------|
| Modbus Points       | Modbus<br>Address* | Туре  | Sub Type | Mode | Value | Comment                    |
| SP_T_Sec_Outlet     | 211                | HR_16 | int16    | R/W  | °C    | S1 fixed setpoint (DHW)    |
| THTr_setpoint       | 213                | HR_16 | int16    | R/W  | °C    | Thermal treatment setpoint |
| (16 bit integer)*   |                    |       |          |      |       |                            |

\*

For some supervisors, it is necessary to implement BOOL as int16 For some supervisors, remove 1 to address number (ex: S1\_10 address=49 If present \*\*

\*\*\*

# **16.** Trouble Shooting

| Findings                                                                                    | Probable Causes                                               | Remedies                                                                       |  |  |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| Pump not operating                                                                          | Locked rotor or damaged                                       | Force to rotate. replace if required                                           |  |  |
|                                                                                             | Corresponding led is not lit                                  | Replace Power Board                                                            |  |  |
|                                                                                             | Pump relay damaged                                            | Replace Power Board                                                            |  |  |
|                                                                                             | Pump protection fuse blown                                    | Check, then replace if necessary                                               |  |  |
|                                                                                             | High Alarm condition detected                                 | Clear alarm, then reset system                                                 |  |  |
|                                                                                             | No voltage to control board terminals                         | Check power supply cable and fuses                                             |  |  |
|                                                                                             | No voltage to pump motor terminals                            | Check protection fuse on main board, cable condition and connections           |  |  |
|                                                                                             | Controller improperly set                                     | Contact After Sales Service                                                    |  |  |
| Low temp alarm condition                                                                    | Primary pump stopped                                          | see "pump not operating"                                                       |  |  |
|                                                                                             | Too low primary temperature                                   | Check for closed valve in the primary                                          |  |  |
|                                                                                             | Too high tap water flow rate (S1)                             | Reduce buffer vessel charging flow rate                                        |  |  |
|                                                                                             | Set point too high. 3-way valve remains closed                | See "Modulating valve does not<br>operate"                                     |  |  |
| Modulating valve does not                                                                   | Damaged or broken actuator                                    | Test and replace if necessary                                                  |  |  |
| operate.                                                                                    | Broken or improperly tightened coupling                       | Check and replace if necessary                                                 |  |  |
|                                                                                             | Valve blocked                                                 | Replace                                                                        |  |  |
|                                                                                             | No signal from the controller                                 | Check, then replace if necessary                                               |  |  |
|                                                                                             | Supply wires improperly tightened                             | Check wires, re-tighten connections                                            |  |  |
|                                                                                             | Actuator stroke restricted                                    | Dismount, then clean the valve                                                 |  |  |
| High alarm condition detected                                                               | Charging pump stopped                                         | Refer to, "Pump not operating", above                                          |  |  |
|                                                                                             | Low recirculation flow rate                                   | Check and fix problem                                                          |  |  |
|                                                                                             | Alarm differential too low                                    | Check and set the controller                                                   |  |  |
|                                                                                             | Alarm differential too low                                    | Refer to "The actuator does not oper-<br>ate" above                            |  |  |
|                                                                                             | Too much differential of pressure across the modulating valve | Check the way the TWM is piped up.<br>Mixing arrangements should be used       |  |  |
| Correct temperatures across the exchanger not obtained.                                     | excessive exchanger scaling at the primary or secondary side  | Open and clean he exchanger according to cleaning instructions                 |  |  |
| Valve and pumps operating satisfactorily                                                    | Primary pipework obstructed or strainer upstream clogged      | Inspect primary pipe work. Clean strainer on the primary side                  |  |  |
|                                                                                             | Isolation valve closed                                        | Open shut off valves.                                                          |  |  |
|                                                                                             | Air presence in the primary                                   | Purge. Check no high parts where air could be trapped, exist                   |  |  |
|                                                                                             | Excessive pressure drops                                      | Check pipe size is suitable for nominal flow rate                              |  |  |
| Temperature does not increase<br>in the buffer vessel and the tap<br>water value is correct | Recirculation flow rate exceeds charg-<br>ing flow rate       | Check and measure charging and recirculation flow rates. adjust when necessary |  |  |
|                                                                                             |                                                               | Recirculation FR < 0.6 x Charging FR<br>FR = Flow Rate                         |  |  |

# 17. Maintenance and Repairs

We recommend that you take out a low cost annual service contract from Heat Exchange Spares.com, which covers all parts and labour. Please contact us for more information.

The frequency of the inspection, depends on the water hardness, temperature and flow rate.

#### Weekly Inspections

- Check for leaks on pipes and components.
- Check that the operation control system is stable and that the temperature does not fluctuate. Temperature hunting causes unnecessary wear of valves, actuators.

#### Annually

- Check the control box electrical connections tightening.
- Check the control valve that no leaks are detected.
- Check the electric current requirement of the circulation pump.
- Clean and disinfect the system at least once a year. See Antibacterial treatment of the AquaSTOR

#### Regularly

- The cleaning schedule for the exchanger will depend on the quality of the water and how much demand is placed on the system.
- Flush out the tank on a regular basis.
- Check regularly that the safety devices (like safety valve etc.) are working properly.
- Lime scaling on the connected devices.

#### Scaling of the secondary side will be evidenced by:

- High pressure drop on the secondary side of the exchanger that should not exceed 50kPa on all models (heat exchanger only).
- Improper temperature range on the secondary side of the exchanger.
- Low temperature difference between inlet and outlet on the primary side of the exchanger when the control valve is fully open.



Only replace any defective parts with original spare parts.

Please contact your HeatExchangerSpares.com for spare parts, noting the serial number and model designation.



Maintenance work must be carried out by a qualified and authorised technician



Hazard of severe electrical shock or burn. Before cleaning and servicing, disconnect power supplies.



Risk of burns. Let the pipes cool down before starting out with maintenance work.

#### 17.1 Antibacterial Treatment of the AquaSTOR

Clean and disinfect the system at least once a year.



Whenever the AquaSTOR or exchanger circuits are to be drained, it is crucial to let the water cool down to preclude any risk of scolding or burns.

The AquaSTOR is fitted with a dismounting inspection hole.

In order to work on the inside of the tank:

- Use the shut-off to isolate the exchanger kit.
- Isolate the installations power circuit.
- Close the cold water inlet and drain out the tank.

Access is through the inspection hole, once the tightening screws have been loosened.

**NOTE**: Comply with all currently applicable governing standards of, cleaning and disinfecting the system at least once a year.

#### 17.2 Clean the Brazed Plate Heat Exchangers



Only the specially designed, pre-fitted cleaning kit and compatible agents should be used for cleaning brazed plate heat exchangers.



Protective gloves and glasses should always be worn with these operations.

Use the specially engineered plugs and isolate the secondary circuit using the gate valves.



Unclip the heat insulator at the top and bottom of the exchanger.

Isolate the exchanger and use the special connective fittings for cleaning, and removing the plugs. CIP connector: 3/4"



- The circulator systems and pumps require no specific maintenance action.
- The motor-driven control valves do not need any particular maintenance. Run annual checks to ensure that the value glands do not show signs of leakage.
- The control box requires no specific maintenance action. Run an annual check to make sure the electrical connections hold tight.

#### 17.3 **Open the Control Box**

Remove the front panel by turning the lock button counter clockwise and lift up the cover.



Then, unscrew the two screws in bottom and lift up the black panel.



#### 17.4 Change Fuses

The control box is fitted with a set of fuses to protect the different components against overload. Extra fuses are included in the control box for quick servicing.



The service work must be carried out by an authorized service technician. Turn off the power supply before starting to work.



| F5 | Fuse F5 |
|----|---------|
| F1 | Fuse F1 |
| F2 | Fuse F2 |
| F3 | Fuse F3 |
| F4 | Fuse F4 |

| 1 | LED 1, lit when pump P1 is power supplied |
|---|-------------------------------------------|
| 2 | LED 2, lit when pump P2 is power supplied |
| 3 | LED 3, lit when pump P3 is power supplied |
| 4 | LED 4, lit when pump P4 is power supplied |
| 5 | Terminal block                            |

For technical information about the fuses, see Section 6.4, current limiting fuses.

## 17.5 Set the number of pumps

The pump configuration and connections is factory made.

In a servicing situation the correct pump must be identified.

| Codification | Meaning                          | Connected pump(s) |
|--------------|----------------------------------|-------------------|
| A62B         | 1 charging pump                  | P3                |
| A63B         | 1 primary pump + 1 charging pump | P1 + P3           |

#### 17.6 Add an extra sensor



Please see Section 7.3, Electrical wiring diagram, option A62B and Electrical wiring diagram, option A63B. S1-S3 are temperature sensors, NTC20k.

#### 17.7 Connect to 230V Triac Output

The 230V electrical output can be configured as a pulse function. For example it can be used to shortly activate an electrical drain valve.

In this configuration, the pulse duration can be programmed to be active a day, week, or special day.

For example each Sunday at 10h00 for 5 seconds. *See 230V Triac menu.* 



#### Connected device must not exceed 230VAC 1A.

#### 17.8 Add relay 1 and relay 2

Relay 1 can be NO (normally open) or NC (normally closed). Relay 2 is always NO (normally open).

Connect the relay 1:

| Operating Mode | Connections on PCB bottom terminal |  |
|----------------|------------------------------------|--|
| No             | C-NO (25-24)                       |  |
| NC             | C-NF (25-26)                       |  |

Connect relay 2 to the controller terminal 13 (IN6) and 14 (OUT6). See Electrical wiring diagram, option A62B and A63B Electrical wiring diagram, option A63B.



If using 230V phase through this contact, do not exceed 2A load.

#### 17.9 Add a Remote Control Contact

The Aquasave can be operated by a remote controller. To enable that, connect a volt free contact between Bl1 and GND.

| Wire Terminal Name | Wire Terminal Number |  |
|--------------------|----------------------|--|
| BI1                | 33                   |  |
| GND                | 31 Or 37             |  |



**NOTE**: When the contact is open, the unit operates normally. If it is closed, the unit is in standby (mode), but the controller display remains activated.

DO NOT power supply this contact. It is a volt free contact.

See Section 7.3, Electrical wiring diagram, option A62B and Electrical wiring diagram, option A63B

# **18.** Assembly of the Charging Kit to the AquaSTOR

**NOTE**: The photos are non-binding - changes are liable to be made without notice.



1. Unpack secondary charging kit and check all parts for damage.



2. Tools required to install the secondary charging kit:

Adjustable spanner, 10mm spanner, Phillips No2 screwdriver and small flat electricians screwdriver.



3. Connect the secondary isolation valve to the AquaSTOR.



4. Connect the heat exchanger support to the support connection on the AquaSTOR.



5. Mount the heat exchanger on the support bracket and connect to the secondary isolation valve.



6. Tighten the "U" bracket on the heat exchanger support.



7. Install a fibre washer on the inlet connection of the heat exchanger.



8. Connect the secondary inlet subassembly (pressure relief valve, taco flow and secondary pump) to the inlet connection of the heat exchanger.



10. Install a fibre washer into one end of the flexible hose.



11. Connect the flexible hose to the secondary pump.



12. Insure the pump connection is tight.



13. Install a fibre washer in the flexible hose and connect to the bottom connection on the AquaSTOR.



14. Insure the flexible hose connection is tight.



15. Mount the first half of the insulation jacket, aligning with the heat exchanger secondary connections.



16. Mount the second half of the insulation jacket, aligning with the heat exchanger primary connections.



17. "Snap" on the insulation retaining clips.



18. Ensure both top and bottom clips are fully seated.



19. Remove the secondary pump terminal box cover.



21. Remove the protective terminal strip.



20. Attach the gland and wiring loom to the terminal box.



22. Connect the secondary pump wiring. Brown : Live, Blue: Neutral and Green/Yellow: Earth



24. Re-attach the secondary pump terminal box cover



23. Ensure that the wiring will not be trapped by the terminal cover.

# **19.** Flowcharts

#### 19.1 Flowchart A60B



#### 19.2 Flowchart A62B





# 20. Wiring the Charging Pump

**NOTE**: The charging pump has not been wired previous to delivery. The five wires cable connected to the control box, must be wired to the charging pump. Please proceed as follows:

- 1 Ensure the system is not connected to the main power supply. If the control box is connected to the main power supply, ensure that the main switch is turned off and locked.
- 2 Open the electric box of the charging pump.
- 3

| Yellow/Green wire to Earth | - |
|----------------------------|---|
| Blue wire to Neutral       | Ν |
| Brown wire to Phase        | L |

4 With a UPS32-80N pump:

To allow the pump to report Ipsothermic contact to the control box, wire the two black wires to the heating protection plug (mark 2 & mark 4).

To proceed, remove the plug from its location.

- 5 Place the gland back in place to provide sealing of the cable.
- 6 Close the electric box of the pump.

#### With a UPS32-80N





# **21.** Special Instructions for Options

#### 21.1 Special Instructions for A62B

The actuator has been factory-calibrated. No special setting is needed.

#### 21.1.1 Electrical Wiring

![](_page_53_Picture_4.jpeg)

#### 21.1.2 Wiring Diagram

![](_page_53_Figure_6.jpeg)

# 22. Commissioning Report

| Installation                           |                      |                          |                 |               |       |
|----------------------------------------|----------------------|--------------------------|-----------------|---------------|-------|
| Tightening Dimension Control           |                      |                          |                 |               |       |
| Air Vent Position                      |                      |                          |                 |               |       |
| Settling Pot presen                    | ce on primary        |                          |                 |               |       |
| Boiler Brend, Instal                   | lation and Power     |                          |                 |               |       |
| Mixing bottle requi                    | red / presence       |                          |                 |               |       |
| Balancing valve pre                    | esence on indirect   | (semi-instantan          | eous) installat | ions          |       |
| Close drain valves                     |                      |                          |                 |               |       |
| Primary conformity                     |                      |                          |                 |               |       |
| Secondary conform                      | nity                 |                          |                 |               |       |
| Accessibility of unit                  | and components       | ;                        |                 |               |       |
|                                        |                      | Configura                | tion Menu       |               |       |
| Sensors                                |                      |                          |                 |               |       |
| Pumps                                  |                      |                          |                 |               |       |
| Other                                  |                      |                          |                 |               |       |
| Primary Pumps                          |                      | Secondary p              | oumps           |               |       |
| Pump 1                                 | Pump 2               | Pump 2   Pump 3   Pump 4 |                 | р 4           |       |
| Electrical bridges c                   | ontrol for pumps     | on power plate           |                 |               |       |
| Pump 1                                 | Pump 2               |                          | Pump 3          | Pum           | p 4   |
| Control valve worki                    | ng                   |                          |                 |               |       |
|                                        |                      | Sett                     | ings            |               |       |
| DHW secondary ou                       | ıtlet T• settings: S | 1                        |                 |               |       |
| PID setting                            |                      |                          |                 |               |       |
| High alarm setting                     |                      | Manual                   |                 | Auto          |       |
| Thermal Treatment                      |                      | Туре:                    | Sett            | ing:          | Time: |
| Eco function activa                    | tion                 |                          |                 |               |       |
| Booster function ac                    | tivation             |                          |                 |               |       |
| Other functions act                    | ivated               |                          |                 |               |       |
| Relay 1 functon                        |                      |                          |                 |               |       |
| Relay 2 function                       |                      |                          |                 |               |       |
| Trending and/or Modbus valve activated |                      |                          |                 |               |       |
| Volt free Remote contact wired or not  |                      |                          |                 |               |       |
| TRIAC 230V connections wired or not    |                      |                          |                 |               |       |
| Other comments                         |                      |                          |                 |               |       |
| Identification of the unit             |                      |                          |                 |               |       |
| Unit ID No.                            | Installer/Cor        | npany Name               | Insta           | allation Site | Date  |
|                                        |                      |                          |                 |               |       |

## 23. Warranty

#### 23.1 Spare Parts

Our equipment comes with a 12-month warranty from the date of shipment. This may be extended to an additonal 6 months from the date of commissioning of the equipment, subject to commissioning by Heat Exchange Spares.com. The warranty period is limited to 18 months from the actual date of shipment from the factory. The manufacturer's liability is limited to the replacement of any defective part that cannot be repaired. No other financial compensation may be claimed in any case under the warranty The nature and probable cause of the defect must be reported to the manufacturer before any action is taken. The defective part should then be returned to our Factory or Head Office for assessment unless written agreement to proceed otherwise has been obtained from Ormandy Rycroft Engineering. The results of the assessment can only state whether or not the terms of the warranty apply.

#### **Exclusion factors:**

Non-compliance with the guidelines for installation, configuration and maintenance: Over pressures, water-hammer, scaling, noncompliant water quality

Also excluded from the warranty:

- Fitting costs, refitting costs, packaging, transport, and any accessories or equipment not supplied by Ormandy Rycroft Engineering, which will only be covered by any warranties issued by said third-party manufacturers.

- Any damage caused by connection errors, insufficient protection, misapplication or faulty or careless operations.

- Equipment disassembled or repaired by any other party than Ormandy Rycroft Engineering or HeatExchangerSpares.com.

Non-payment will lead to all operational warranties covering the delivered equipment being terminated.

#### 23.2 How to contact us

Our contact details are updated on our website www.ormandygroup.com

| Head Office: <b>Ormandy Rycroft Engineering Limited</b> ,<br>Duncombe Road, Bradford BD8 9TB | HeatExchangerSpares.com Limited<br>PO BOX 230, Watford, Herts. WD18 8AF, UK. |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Tel: +44 (0)1274 490 911                                                                     | T: +44 (0)1923 232335                                                        |
| Email: sales@ormandygroup.com                                                                | E: mail@heatexchangerspares.com                                              |
| Website: www.ormandygroup.com                                                                | www.heatexchangerspares.com                                                  |

#### For parts, servicing and service contracts.

![](_page_56_Picture_0.jpeg)

Duncombe Road, Bradford, England BD8 9TB.

Telephone: +44 (0) 1274 490911. Email: sales@ormandygroup.com

# www.ormandygroup.com